動物蛋白質(zhì)生物合成的起始氨基酸是什么
蛋白質(zhì)生物合成可分為五個階段,氨基酸的活化、多肽鏈合成的起始、肽鏈的延長、肽鏈的終止和釋放、蛋白質(zhì)合成后的加工修飾。
(一)氨基酸
在進行合成多肽鏈之前,必須先經(jīng)過活化,然后再與其特異的tRNA結(jié)合,帶到mRNA相應(yīng)的位置上,這個過程靠氨基酰tRNA合成酶催化,此酶催化特定的氨基酸與特異的tRNA相結(jié)合,生成各種氨基酰tRNA.每種氨基酸都靠其特有合成酶催化,使之和相對應(yīng)的tRNA結(jié)合,在氨基酰tRNA合成酶催化下,利用ATP供能,在氨基酸羧基上進行活化,形成氨基酰-AMP,再與氨基酰tRNA合成酶結(jié)合形成三聯(lián)復(fù)合物,此復(fù)合物再與特異的tRNA作用,將氨基酰轉(zhuǎn)移到tRNA的氨基酸臂(即3'-末端CCA-OH)上原核細胞中起始氨基酸活化后,還要甲酰化,形成甲酰蛋氨酸t(yī)RNA,由N10甲酰四氫葉酸提供甲酰基。而真核細胞沒有此過程。
前面講過運載同一種氨基酸的一組不同tRNA稱為同功tRNA。一組同功tRNA由同一種氨酰基tRNA合成酶催化。氨基酰tRNA合成酶對tRNA和氨基酸兩者具有專一性,它對氨基酸的識別特異性很高,而對tRNA識別的特異性較低。
氨基酰tRNA合成酶是如何選擇正確的氨基酸和tRNA呢?按照一般原理,酶和底物的正確結(jié)合是由二者相嵌的幾何形狀所決定的,只有適合的氨基酸和適合的tRNA進入合成酶的相應(yīng)位點,才能合成正確的氨酰基tRNA。現(xiàn)在已經(jīng)知道合成酶與L形tRNA的內(nèi)側(cè)面結(jié)合,結(jié)合點包括接近臂,DHU臂和反密碼子臂D柄、反密碼子和可變環(huán)與酶反應(yīng)
乍看起來,反密碼子似乎應(yīng)該與氨基酸的正確負載有關(guān),對于某些tRNA也確實如此,然而對于大多數(shù)tRNA來說,情況并非如此,人們早就知道,當(dāng)某些tRNA上的反密碼子突變后,但它們所攜帶的氨工酸卻沒有改變。1988年,候稚明和Schimmel的實驗證明丙氨酸t(yī)RNA酸分子的氨基酸臂上G3:U70這兩個堿基發(fā)生突變時則影響到丙氨酰tRNA合成酶的正確識別,說明G3:U70是丙氨酸t(yī)RNA分子決定其本質(zhì)的主要因素。tRNA分子上決定其攜帶氨基酸的區(qū)域叫做副密碼子。一種氨基酰tRNA合成酶可以識別以一組同功tRNA,這說明它們具有共同特征。例如三種丙氨酸t(yī)RNA(tRNAAlm/CUA,tRNAAim/GGC,tRNAAin/UGC都具有G3:U70副密碼子。)但沒有充分的證據(jù)說明其它氨基酰tRNA合成酶也識別同功tRNA組中相同的副密碼子。另外副密碼子也沒有固定的位置,也可能并不止一個堿基對。
(二)多肽鏈合成的起始
核蛋白體大小亞基,mRNA起始tRNA和起始因子共同參與肽鏈合成的起始。
1、大腸桿菌細胞翻譯起始復(fù)合物形成的過程:
(1)核糖體30S小亞基附著于mRNA起始信號部位:原核生物中每一個mRNA都具有其核糖體結(jié)合位點,它是位于AUG上游8-13個核苷酸處的一個短片段叫做SD序列。這段序列正好與30S小亞基中的16S rRNA3’端一部分序列互補,因此SD序列也叫做核糖體結(jié)合序列,這種互補就意味著核糖體能選擇mRNA上AUG的正確位置來起始肽鏈的合成,該結(jié)合反應(yīng)由起始因子3(IF-3)介導(dǎo),另外IF-1促進IF-3與小亞基的結(jié)合,故先形成IF3-30S亞基-mRNA三元復(fù)合物。
(2)30S前起始復(fù)合物的形成:在起始因子2作用下,甲酰蛋氨酰起 始tRNA與mRNA分子中的AUG相結(jié)合,即密碼子與反密碼子配對,同時IF3從三元復(fù)合物中脫落,形成30S前起始復(fù)合物,即IF2-3S亞基-mRNA-fMet-tRNAfmet復(fù)合物,此步需要GTP和Mg2+參與。
(3)70S起始復(fù)合物的形成:50S亞基上述的30S前起始復(fù)合物結(jié)合,同時IF2脫落,形成70S起始復(fù)合物,即30S亞基-mRNA-50S亞基-mRNA-fMet-tRNAfmet復(fù)合物。此時fMet-tRNAfmet占據(jù)著50S亞基的肽酰位。而A位則空著有待于對應(yīng)mRNA中第二個密碼的相應(yīng)氨基酰tRNA進入,從而進入延長階段,2、真核細胞蛋白質(zhì)合成的起始
真核細胞蛋白質(zhì)合成起始復(fù)合物的形成中需要更多的起始因子參與,因此起始過程也更復(fù)雜。
(1)需要特異的起始tRNA即,-tRNAfmet,并且不需要N端甲酰化。已發(fā)現(xiàn)的真核起始因子有近10種(eukaryote Initiation factor,eIF)
(2)起始復(fù)合物形成在mRNA5’端AUG上游的帽子結(jié)構(gòu),(除某些病毒mRNA外)
(3)ATP水解為ADP供給mRNA結(jié)合所需要的能量。真核細胞起始復(fù)合物的形成過程是:翻譯起始也是由eIF-3結(jié)合在40S小亞基上而促進80S核糖體解離出60S大亞基開始,同時eIF-2在輔eIF-2作用下,與Met-tRNAfmet及GTP結(jié)合,再通過eIF-3及eIF-4C的作用,先結(jié)合到40S小亞基,然后再與mRNA結(jié)合。
mRNA結(jié)合到40S小亞基時,除了eIF-3參加外,還需要eIF-1、eIF-4A及eIF-4B并由ATP小解為ADP及Pi來供能,通過帽結(jié)合因子與mRNA的帽結(jié)合而轉(zhuǎn)移到小亞基上。但是在mRNA5’端并未發(fā)現(xiàn)能與小亞基18SRNA配對的S-D序列。目前認為通過帽結(jié)合后,mRNA在小亞基上向下游移動而進行掃描,可使mRNA上的起始密碼AUG在Met-tRNAfmet的反密碼位置固定下來,進行翻譯起始。
通過eIF-5的作用,可使結(jié)合Met-tRNAfmet·GTP及mRNAR40S小亞基與60S大亞基結(jié)合,形成80S復(fù)合物。eIF-5具有GTP酶活性,催化GTP水解為GDP及Pi,并有利于其它起始因子從40S小亞基表面脫落,從而有利于40S與60S兩個亞基結(jié)合起來,最后經(jīng)eIF-4D激活而成為具有活性的80SMet-tRNAfmet· mRNA起始復(fù)合物。
(三)多肽鏈的延長
在多肽鏈上每增加一個氨基酸都需要經(jīng)過進位,轉(zhuǎn)肽和移位三個步驟。
(1)為密碼子所特定的氨基酸t(yī)RNA結(jié)合到核蛋白體的A位,稱為進位。氨基酰tRNA在進位前需要有三種延長因子的作用,即,熱不穩(wěn)定的EF(Unstable temperature,EF)EF-Tu,熱穩(wěn)定的EF(stable temperature EF,EF-Ts)以及依賴GTP的轉(zhuǎn)位因子。EF-Tu首先與GTP結(jié)合,然后再與氨基酰tRNA結(jié)合成三元復(fù)合物,這樣的三元復(fù)合物才能進入A位。此時GTP水解成GDP,EF-Tu和GDP與結(jié)合在A位上的氨基酰tRNA分離
肽鍵的形成
①核蛋白體“給位”上攜甲酰蛋氨酰 基(或肽酰)的tRNA
②核蛋白體“受體”上新進入的氨基酰tRNA;
③失去甲酰蛋氨酰基(或肽酰)后,即將從核蛋白體脫落的tRNA;
④接受甲酰蛋氨酰基(或肽酰)后已增長一個氨基酸殘基的肽鍵
(2)轉(zhuǎn)肽--肽鍵的形成(peptide bond formation)
在70S起始復(fù)合物形成過程中,核糖核蛋白體的P位上已結(jié)合了起始型甲酰蛋氨酸t(yī)RNA,當(dāng)進位后,P位和A位上各結(jié)合了一個氨基酰tRNA,兩個氨基酸之間在核糖體轉(zhuǎn)肽酶作用下,P位上的氨基酸提供α-COOH基,與A位上的氨基酸的α-NH2形成肽鍵,從而使P位上的氨基酸連接到A位氨基酸的氨基上,這就是轉(zhuǎn)肽。轉(zhuǎn)肽后,在A位上形成了一個二肽酰tRNA(圖18-13)。
(3)移位(Translocation)
轉(zhuǎn)肽作用發(fā)生后,氨基酸都位于A位,P位上無負荷氨基酸的tRNA就此脫落,核蛋白體沿著mRNA向3’端方向移動一組密碼子,使得原來結(jié)合二肽酰tRNA的A位轉(zhuǎn)變成了P位,而A位空出,可以接受下一個新的氨基酰tRNA進入,移位過程需要EF-2,GTP和Mg2+的參加(圖18-14)。
以后,肽鏈上每增加一個氨基酸殘基,即重復(fù)上述進位,轉(zhuǎn)肽,移位的步驟,直至所需的長度,實驗證明mRNA上的信息閱讀是從5’端向3’端進行,而肽鏈的延伸是從氮基端到羧基端。所以多肽鏈合成的方向是N端到C端
(四)翻譯的終止及多肽鏈的釋放
無論原核生物還是真核生物都有三種終止密碼子UAG,UAA和UGA。沒有一個tRNA能夠與終止密碼子作用,而是靠特殊的蛋白質(zhì)因子促成終止作用。這類蛋白質(zhì)因子叫做釋放因子,原核生物有三種釋放因子:RF1,RF2T RF3。RF1識別UAA和UAG,RF2識別UAA和UGA。RF3的作用還不明確。真核生物中只有一種釋放因子eRF,它可以識別三種終止密碼子。
不管原核生物還是真核生物,釋放因子都作用于A位點,使轉(zhuǎn)肽酶活性變?yōu)樗槊富钚裕瑢㈦逆湉慕Y(jié)合在核糖體上的tRNA的CCA末凋上水介下來,然后mRNA與核糖體分離,最后一個tRNA脫落,核糖體在IF-3作用下,解離出大、小亞基。解離后的大小亞基又重新參加新的肽鏈的合成,循環(huán)往復(fù),所以多肽鏈在核糖體上的合成過程又稱核糖體循環(huán)(ribosome cycle)(圖18-16)。
(五)多核糖體循環(huán)
上述只是單個核糖體的翻譯過程,事實上在細胞內(nèi)一條mRNA鏈上結(jié)合著多個核糖體,甚至可多到幾百個。蛋白質(zhì)開始合成時,第一個核糖體在mRNA的起始部位結(jié)合,引入第一個蛋氨酸,然后核糖體向mRNA的3’端移動一定距離后,第二個核糖體又在mRNA的起始部位結(jié)合,現(xiàn)向前移動一定的距離后,在起始部位又結(jié)合第三個核糖體,依次下去,直至終止。兩個核糖體之間有一定的長度間隔,每個核糖體都獨立完成一條多肽鏈的合成,所以這種多核糖體可以在一條mRNA鏈上同時合成多條相同的多肽鏈,這就大大提高了翻譯的效
多聚核糖體的核糖體個數(shù),與模板mRNA的長度有關(guān),例如血紅蛋白的多肽鏈mNRA編碼區(qū)有450個核苷酸組成,長約150nm 。上面串連有5-6個核糖核蛋白體形成多核糖體。而肌凝蛋白的重鏈mRNA由5400個核苷酸組成,它由60多個核糖體構(gòu)成多核糖體完成多肽鏈的合成。